Dual-action, inline fluid stabilizers remove the shock from your systems.

Experts in Pump Products
A recognized worldwide leader in the engineering and manufacturing of technical ceramics, CoorsTek provides advanced materials and design configurations for severe-service environments. CoorsTek is a preferred supplier of pump products and accessories for extreme-duty applications.

Reduce Maintenance and Operating Costs
- Extends valve, piping, and gauge life
- Eliminate vibration causing significant damage to weld connections and support structures
- Improve metering and control instrument life span
- Eliminate wear-producing shock in bearings, packing, seals, and other pump components
- Reduce downtime required for part replacement
- Increase system capacity by safely permitting increased flow velocity and operating pressures
- Improve accuracy of setting and measuring of metering equipment
- Promote safety by preventing breakage and leaks in systems carrying flammable and hazardous materials

Features
- Dual-action design utilizes a throttling orifice and a gas compression chamber to remove fluid pulsation
- Through-flow design acts on every gallon passed through stabilizer
- Installs inline with your piping and can be mounted vertically or horizontally – at any angle
- Surge removal as high as 95% can be achieved with the proper installation and sizing
- Compact design allows for installation in tight equipment configurations
- Handles wide range of line sizes, fluids, temperatures, and pressures

Installation
The location of an inline stabilizer depends on the source of the pulsation or surge of pressure. When pulsation is caused by a pump discharge, the stabilizer should be installed as close to the discharge as possible. For pressure surges created by quick closing valves, install the stabilizer upstream from the valve, or other device causing the surge, and as close to this equipment as possible. When using the stabilizer to protect metering equipment and control instruments, install the unit upstream and as close to this equipment as possible. Most common connections are available, or specify the type of connection you would like on your unit if it is not shown.

Operation
Within the stabilizer is a mandrel perforated with throttling orifices, through which liquid flows from either direction (see illustration, below). Around the mandrel is a synthetic rubber sleeve, which is sealed and held in place by the case heads. This area forms a sealed gas chamber between the outside of the sleeve and the inside of the case. After installation, this area is filled with an inert, compressed gas to predetermined charge pressure.

When the hydraulic system is operating normally, the synthetic rubber sleeves rests close to the mandrel. The hydraulic pressure of the liquid flowing through the stabilizer balances the force of the gas acting on the outside of the sleeve. When pulsation or surges occur in the system, the liquid is forced through the orifices in the mandrel to expand the sleeve and compress the gas surrounding the sleeve. This action effectively dissipates the energy in the pressure surge.

About CoorsTek
With over 50 locations across four continents, Coorstek is the international partner of choice for companies requiring the unique, high-performance properties of engineered technical ceramics. CoorsTek utilizes over 300 proprietary ceramic formulas to manufacture standard and custom components for virtually every industry in the global economy.