ADVANCED CERAMIC COMPONENTS FOR NEXT-GENERATION MEDICAL DEVICES

An introduction to processes and materials used in implant components, subassemblies and devices.
1. In the prototype phase, medical device design engineers are normally focused on the following criteria:
 • Compressed schedule and time to market
 • Design flexibility
 • Avoidance of costly tooling or engineering costs

 Typical manufacturing methods used to support these criteria are:

 Isostatic pressing
 Ceramic powder is poured into a flexible mold then inserted into a pressure vessel which uniformly compresses the mold and powder into a basic, non-complex shape such as a cylinder. This produces a blank for secondary machining.

 Pre-sinter “Green” machining
 In the unfired state, ceramic can be machined relatively easily taking into account shrinkage rates during the sinter or firing process.

 Post-sinter “Hard” grinding
 Tight tolerances and critical surfaces can be ground after firing although minimizing the grinding and maximizing green machining will lower unit costs.

2. In the production phase, the following criteria are normally more important:
 • Repeatability
 • Lower unit cost
 • Increased yields
 • High-volume production
 • Tighter tolerances

 Typical manufacturing methods used to support these criteria are:

 Uniaxial pressing
 Ceramic powder is filled into the tool cavity and then compressed axially.

 CIM (ceramic injection molding)
 Ceramic feedstock is forced into a mold at high temperature similar to plastic injection molding although post-mold sintering is still required.

 Extrusion
 Ceramic material is forced through a die in various shapes and then cut to length before firing.

 HIP
 HIP (hot isostatic pressing) is used to increase the density and subsequently the mechanical properties of the fired ceramic material.
3. Other processing methods can be used on the ceramic:

Polishing / lapping
Used to generate a very flat, parallel or high mirrored surface finish.

Metalizing
Surface preparation for attaching ceramic to a metal component through brazing.

Brazing
Attaching ceramic to metal using a braze alloy by heating all three materials (ceramic, metal, braze alloy) to create an hermetic seal.

4. Typical applications where ceramic materials are used in medical devices:

Neurological stimulators / Cochlear implants / Retinal implants:
- Feed through insulators
- Electronic cases / packaging
- RF window

CRM (cardio rhythm management)
- Feed through insulators
- Electronic cases / packaging
- RF window

5. In medical devices, the most commonly used ceramic materials are as follows:

Alumina (Al₂O₃)
Typically used in high wear applications

Zirconia (YTZP)
Typically used in high mechanical strength applications

Zirconia Toughened Alumina (ZTA) CeraSurf™
Excellent combination of wear resistance and high strength

6. Ceramics may be considered for the following benefits (material dependent):
- Radio lucent / opaque
- Hermeticity / ability to be brazed
- High strength to weight ratio
- Electrical insulation
- High hardness and low wear
- Bio compatibility / Bio inert / non toxic
- Zero porosity (controlled porosity materials also available)
- Translucency / Aesthetics
- Thermally stable
- Chemical resistance
Any suggested applications are not made as a representation or warranty that the material will ultimately be suitable for such applications. The device designer is ultimately responsible for all design and material suitability decisions. Data contained herein is not to be construed as absolute and does not constitute a representation or warranty for which CoorsTek Bioceramics assumes legal responsibility. ANY WARRANTY OR REPRESENTATION FOR WHICH CoorsTek Bioceramics IS RESPONSIBLE SHALL BE SUBJECT TO A SEPARATELY NEGOTIATED AGREEMENT. CoorsTek Bioceramics is a wholly owned subsidiary of CoorsTek, Inc.